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The characteristics of momentum and kinetic energy transfer in rarefied gases are analyzed on the basis
of the elementary kinetic theory of gases. The proposed formulas take into account the discreteness of the
gas structure which, as is shown, is manifested in the presence of curvature of the heat-transfer surfaces.
The validity of the formulas is confirmed by existing experimental data.

It is one of the basic principles of the kinetic theory of gases that the viscosity and thermal conductivity of gases
do not depend on pressure. This conclusion is suggested by the very structure of the expressions for the viscosity [1]

n = 0.499p oL, (1)
where p = mn; L =KkTAR7e%p = 1A270%n, and the thermal conductivity
A =enc, (2)

where € = (9y — 5)/4; v = cp/cv. In these expressions, the product of the density p and the mean free path L is
approximately constant (oL ~ const), and therefore 77 ~ A ~ pL over a broad range of pressure variation.

The numerical values of the coefficients of viscosity 7 and thermal conductivity A can be determined by
measuring the viscous stresses r and the heat flux q between two plane surfaces. The corresponding expressions take
the form [1]
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However, at pressures at which L >d the effective values of the viscosity and thermal conductivity are reduced
in view of the limitations on the increase in L with simultaneous decrease in the density p. In fact, as has been
experimentally established [1,2], the reduction in the rate of transfer of momentum and kinetic energy with decrease
in pressure is observed at a much higher pressure than that corresponding to the condition L >d. This is equivalent
to a decrease in the transfer coefficients—viscosity and thermal conductivity. Qualitatively, the effect is attributed
[1—8] to the slip of the gas molecules at the surface and the temperature jump at the gas-wall interface. Quantitatively,
the effects are taken into account by introducing into Egs. (3) and (4) a correction for the discrete nature of the
medium, whereupon these equations respectively take the form [1, 4, 5]

__nu
Kt {5)
where £ = 2+ 0.499L [(2 - ) f1;
_MT—Ty)
i d-+2 ©

where g = ((2 - a)/)(2/(y + 1))(Mney)L = BL.
In view of the fact that the momentum transfer (f) and thermal accommodation (a) coefficients vary between 0

and 1, the slip (£) and temperature jump (g) coefficients are, in the general case, indeterminate. As a rule, their
numerical values are found experimentally.
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In one of the few studies of the temperature jump and its consequences for the one-dimensional problem Lazarev
[3] recorded the temperature field between two plane plates separated by a distanced = 9. 1073 m. At pressures p =
= 8.7:10" mm Hg and below (Kn = LA = 0.07) he experimentally detected, if not a temperature jump in the normal
sense, a marked deformation of the temperature field equivalent to a jump in a layer of gas with thickness on the
order of the mean free path adjacent to the plates.

The experimental determination of the temperature jump in heat transfer between two parallel plates is
associated with known experimental difficulties, because in rarefied gases the fluxes are small and the conditions of
one~dimensionality are difficult to satisfy. It is for precisely this reason that in studying heat transfer in rarefied
gases the methods of concentric spheres and coaxial cylinders are used [1-3, 6—8]. For the case of two coaxial
cylinders, the Fourier heat conduction equation takes the form

€Y = M s (7)
fo I (R/ro)
and with allowance for the temperature jump
MT—T))

(8)

g9 =

roln (R/re) + BLI(r/R) +- 1]

Apart from the fact that expression (8) still lacks strict physical verification, in practice it is inapplicable to
heat transfer in an infinite space (as R —«) and can be used only for a qualitative analysis at large values of R/rq.
Moreover, both in the earlier work of Dulong and Petit, Kundt and Warburg [1, 3], and Smoluchowski [1, 2]} as well as
in the later studies of Kyte, Madden, and Piret [6], effects equivalent to a temperature jump were observed at higher
pressures, but for heat transfer between surfaces other than plane.

On the other hand, the use of the Knudsen number (Kn = L/d) for estimating the applicability of the continuum
theory is not sufficiently rigorous or well founded, in view of the indeterminacy of the characteristic dimensiond. In
fact, the quantity b may be both the distance between the plane heat-transfer surfaces and the diameter d; of the inner
cylinder or sphere, if heat transfer takes place between two coaxial cylinders or concentric spheres. At the same
time, in practice it is more usual to encounter systems of arbitrary shape and the choice of a characteristic
dimension becomes difficult.

This situation cannot be regarded as satisfactory; hence, the need to refine the model and mechanism of energy
transfer in rarefied gases.

Without disputing the presence of slip and a temperature jump at the gas-solid interface, but assuming that they
are negligibly small, we can show that the reduction in the rate of heat transfer between two coaxial cylinders or
spheres with decrease in pressure is attributable to the curvature of the heat-transfer surfaces.

First, we consider the nature of the qualitative difference in heat transfer through a rarefied gas for parallel
plates and coaxial cylinders. Let all the heat-transfer conditions be perfectly identical, except one—the absence of
curvature of the surfaces in the first case and its presence in the second. Thus, to preserve the identity, the gases,
their temperatures and their thermophysical properties must be the same in both cases. Moreover, the distances
between the heat-transfer surfaces should be equal

d=R—ry, (9)
as should the absolute temperatures of like surfaces.

To examine the effect of the curvature of the surfaces on the heat transfer between them, we transform Egs.
(4) and (7), using (1) and (2), so as to isolate the complexes that do not depend on curvature. Then Eq. (4) is written
in the form

A

where

ATL=%T2L (11)
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is the temperature drop over one mean free path L (Fig. la). At small temperature gradients, neglecting the
temperature dependence of the mean free path, we may assume that ATy, & const,

We obtain analogous relations for coaxial cylinders from Eq. (7):

s c
qws—z»ATﬂ (12)
where
AT = L= (13)
1o In (R/rg)

In (10) and (12), in view of the conditions of the problem, the complexes A/L are the same.

Comparing (11) and (13), we find that as a result of the inequality ryIn{(R/rg) < R — 1y or, using (9), ryln(R/rg) <
< d the inequality

ATPSAT (14)

is always satisfied, from which it follows that if all of the identity conditions are satisfied except one—the curvature
of the surfaces, for a continuum the heat flux density is always greater for coaxial cylinders than for flat plates.

Further analysis of Eqgs. (11) and (13) shows that even in the presence of curvature of the surfaces it is possible
to find a combination of physical parameters of the gas for which the identity conditions are satisfied exactly. In fact,
let the relations between L and d in (11) be such

L=d, (15)

that for the one-dimensional problem ATy =Ty — Ty. Then to ensure identicalness it is necessary to require that in
Eq. (13) the equality AT%Y =T; - Tyor

ATe=ATY (16)
be satisfied, which is formally possible only when
L = roln(R/ry). (17)

The latter is physically impracticable owing to the previously adopted condition (9). The only parameter that can be
varied in order to preserve all the identity conditions is the pressure of the gas p.

In fact, considering relation (1), for a layer of gas of thickness R — ry we can select a pressure
P> ps (18)

such that all the identity conditions (9), (15), (16) and (17) are satisfied. From the latter inequality it follows that the
curvature of the heat-transfer surfaces affects the energy transfer process in the same way as the gas pressure.
Consequently, for each change in the curvature of the surfaces between which transfer processes are observed there
is an equivalent change of pressure. It is in this that the qualitative originality of energy transfer processes in the
presence of curvature of the surfaces essentially consists. We now show to what quantitative changes this leads in the
process of heat transfer by conduction through a rarefied gas.

In our qualitative analysis we did not impose any limitations either on the thermophysical parameters of the gas
T, n, A, L, or on the geometry of the heat-transfer systems d, ry, R. Therefore, our conclusions are valid for any
values of T, 7, A, L, d, r¢, R. It is only important to satisfy the identity conditions.

With this in mind, we find an expression for the temperature drop ATy in a layer of gas immediately adiacent to

the surface of the inner cylinder and one mean free path thick (Fig. 1b). Then, assuming that at L the interaction
process corresponds to total energy transfer between the colliding molecules, by analogy with (13) we write
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AT = — D=t (19)
roln{{ro + L)/rol

where ty is the temperature of the gas at the surface of an imaginary cylinder of radius ry + L.
Similar values of the temperature drops Aty, ..., Aty, ..., ATy are found for the other layers of thickness L:

bl L (20)
(ro +L) In [(ro +2L)/(ro +L)1
Atn = tn— tﬂ+l L: (21)
[ro + (n — DL 1In{(ro +nL)/re + (n— 1)L]}

t—Ty L ©2)

T, =
Als (R —L)In [RAR —L)]

where AT, is the temperature drop in a layer of gas of thickness L immediately adjacent to the inner surface of the
outer cylinder.

Expressions (19)—(22) were obtained on the same initial assumptions as expression (13). Therefore, they can be
used for calculating the heat flux equally with (13). Below it will be shown that the advantage of expressions (19)—-(22)
consists in the possibility of using them to take into account the effect of the curvature of the heat transfer surfaces.

AT [

At, = const /
pa
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Fig. 1. Model of molecular transfer processes: a)
between plane surface; b) between coaxial cylinders
or spheres.

Following the ideas developed in our qualitative analysis, to satisfy the identity conditions we must find within
each layer of thickness L a series of equivalent pressures, whose values satisfy the inequality

Pry>>Pra = oS> Prp > > P (23)

In reality there is no pressure gradient satisfying inequality (23). Accordingly, to preserve identity conditions (9),

(15), (16) and (17) we can proceed by selecting an equivalent thickness of the layer of gas Ly, for which condition (16)
is satisfied. Establishing in Eqs. (19)—(22), respectively, the following equalities: ATy = Ti—#; Alb=ti—15 ..., At, =
=ty —tysyer, ATo= 1ty — Ty, we have

Lrl =T ll’l [(rO -+ L)/folv (24)

Lo = (ro -+ L) In[(ro + 2L)/(ro +L)], (25)

Ly, = {ro + (n — LY In{(ro + nL)/[ro + (n— DL}, (26)
Lg =R —L)In[R/(R— L) (27)
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The values of L., obtained can be used as the equivalent of L in (13), if we aim at finding local values ATY (for
each layer of thickness L) and not ATYY, averaged over the entire thickness of the R — ry layer. The general pattern
of the temperature field is not disturbed by substituting L.. for L, since Ly = ¢ [L, In(r + L)/r], whererg=r=< (R -~
— 2L), and the local values of Ly satisfy the inequality L, <CL,..<L, <...<<Lp.

In practical calculations the parameters L., and Ly may be of importance. The former may be regarded as the
thickness of the boundary layer on the surface of the inner cylinder and used to calculate the heat losses per unit
surface of the inner cylinder. The parameter Ly may be regarded as the thickness of the boundary layer on the surface
of the outer cylinder; it can be used to calculate the inflow of heat per unit surface of the outer cylinder.

Replacing the parameter L and Ly;, in accordance with (24), in Eq. (13) with subsequent substitution of the
result into Eq. (12) gives the value of the heat losses qu with allowance for the curvature of the surface of the inner
cylinder

oy - M= Ty) Inl + (Lr)]
¢ In (R/r) L

(28)

We obtain a similar formula for the specific heat flux absorbed by the outer cylinder if in (13) we replace L with
Ly from (27):

g — M= T (R—L) In[RAR — Ly (29)
oR In (Rirg) L ‘

In both cases, passage to the limit as L — 0 gives the usual equation of heat conduction (7) for a continuum, since

fim L@y g iy REDIRIRIR — L)

L0 L-0 L

= 1.

Performing a similar analysis of the continuum equation for concentric spheres [6]

MTi—To)
Sp__ ‘
g = re = FUR) UR) {30)
we obtain

g5 — MT1—Ty) I (31)

¢ Liro— (R} "

After constructing equations such as (19)—(22), but for concentric spheres a distance L apart, extracting the
parameter L, and substituting values of L, info Eg. (81), we have

oo MI=T) 1 52)
¢ ro—(ro/R) [1 +(L/ro)l
Y N N 63)

R —(PYR) 1+ (L/R)

where the multipliers ¥ = 1/[1 + (L/cy)] and ¢; = 1/[1 + (L./R)] take into account the effect of the curvature of the
spheres. As L —0 ¢; = ¢y — 1.

To confirm the validity of formula (28) and estimate its accuracy, we compared the calculations with the most
reliable experimental data [6] on the heat transfer of a platinum wire 0.078 mm in diameter in air at pressures from
0.1 to 760 mm Hg. As the outer radius we took the distance between the axis of the wire and the resistance
thermometer (R = 152 mm). As the characteristic temperature we took the mean integral temperature in the gas
volume between the inner and outer cylinders:

where
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1 2 1 '
=2 - -
: 2 { [I — (ro/R)? in (R/ry) 4]}

The thermal conductivity of air A was calculated with allowance for its temperature dependence [1], and the mean
free path L at the surface temperature of the wire Ty.

The heat losses from the platinum wire to the gas, calculated from (28), are represented by the solid line in Fig.
2, which gives the heat transfer coefficient a$¥ = qS¥/(T; — T») as a function of pressure. The points represent the
experimental values of the heat-transfer coefficient [6].

The calculated curve corresponds, with an error not exceeding 10%, to the experimental values in a pressure
region on the order of 10—500 N/m? (0.2 < Kny < 10), which indicates the validity of Eq. (28) in the pressure region in
which convection is practically absent. To take the effect of convection into account at pressures of 500 N/m? and
above, we made a calculation of the boundary layer as a function of pressure in accordance with Langmuir's formula

[1]
rln(riry) = B, (34)

where B = CL(T,,/M)*/% for air B = 4.3-107% m.

In this case taking convection into account reduces to finding the outer radius r of the cylindrical boundary
layer and substituting the corresponding value in (28) instead of R. The calculated curve, corrected for the effect of
convection, is represented by the broken line in Fig. 2. The discrepancy between calculation and experiment is within
20—-25%. Obviously, it is a consequence of disregarding the vertical orientation of the wire and the temperature jump
at its surface, on the one hand, and the approximate nature of the Langmuir formula (34), on the other. Comparison
of theory and experiment [6] for a sphere 7.9 mm in diameter (107 < Kny < 10™1) gives qualitatively good agreement.
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Fig. 2. Heat-transfer coefficients ozgy, aSP (W/m? - deg)

as functions of rarefied air pressure in the presence of

curvature of the heat-transfer surfaces (p,N/mz): 1)

theory for heat conduction between coaxial cylinders; 2)

the same with allowance for convection; 3) theory for

spheres; 4) experimental for cylinders; 5) the same for
spheres.

To refine relations of type (28), (32) and to take into account certain other subtleties of transfer processes in
rarefied gases, it is necessary to organize special experiments in the light of the theory expounded above.
Nonetheless, the very fact of experimental confirmation of a theory based on an idea completely unrelated fo the
concepts of gas slip and temperature jumps provides a basis for reexamining certain results of transport theory in
rarefied gases following from modern views concerning the importance of the discrete structure of the medium. In
particular, this applies to the experimental data on the accommodation coefficient obtained from the temperature jump
at the surface of cylindrical wires.
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NOTATION

k is Boltzmann's constant; ¢ is the diameter of the gas molecule; ¢ is the specific heat flux; T and t are
temperatures; p is the pressure; 7 and A are the coefficient of viscosity and the thermal conductivity of the gas,
respectively; ¢, and ¢y are the specific heat at constant pressures and constant volume; p and u are the density and
mass-averaged velocity of the gas; m, v, L are the mass, the mean velocity, and the mean free path of the gas
molecules; f and « are the diffuse reflection and thermal accommodation coefficients; ry, R, and r are the inner and
outer radii and the variable radius of the coaxial cylinders or spheres; dy = 2ry; d is the distance between two parallel
plates; Kng = L/do or Kn = LA is the Knudsen number. Indices: cy—cylinder; sp—sphere; 1, rl—inner; 2, R—outer;
m—mean; j—jump; s—slip; c—curvature.
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