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The c h a r a c t e r i s t i c s  of momentum and kinetic energy t r ans fe r  in r a re f i ed  gases  a re  analyzed on the basis  
of the e l emen ta ry  kinetic theory of gases .  The proposed formulas  take into account the d i s c r e t e n e s s  of the 
gas s t ruc tu re  which, as is shown, is manifes ted  in the p resence  of curva ture  of the h e a t - t r a n s f e r  sur faces .  
The val idi ty  of the formulas  is conf i rmed by exis t ing exper imenta l  data. 

It is one of the basic  p r inc ip les  of the kinetic theory of gases  that the v iscos i ty  and the rmal  conductivi ty of gases  
do not depend on p r e s s u r e .  This  conclusion is suggested by the very  s t ruc tu re  of the express ions  for the v i scos i ty  [1] 

q = 0.4999 vL, (1) 

where  p = mn; L = kT/~f2 7r(~2p = 1/~f2 ~r(~2n, and the the rmal  conductivity 

= 8~1 ca, (2) 

w h e r e  e = (93/ - 5)/4; 3/ = Cp/C v. In these e x p r e s s i o n s ,  the p r o d u c t  of the d e n s i t y  p and the mean  f r ee  path  L is  
a p p r o x i m a t e l y  cons tan t  (pL  ~ const ) ,  and t h e r e f o r e  77 ~ k ~ p L  o v e r  a b road  range  of p r e s s u r e  v a r i a t i o n .  

The numer i ca l  values of the coeff ic ients  of v i scos i ty  ~) and thermal  conductivity k can be de te rmined  by 
m e a s u r i n g  the viscous  s t r e s s e s  ~- and the heat flux q between two plane surfaces~ The cor responding  express ions  take 
the fo rm [1] 

�9 = n_~_u (3) 
d 

Z, (T1-- T~) 
q -- (4) 

d 

However ,  at p r e s s u r e s  at which L > d the effect ive  values of the v i scos i ty  and the rma l  conductivity a re  reduced 
in view of the l imita t ions  on the inc rease  in L with s imultaneous d e c r e a s e  in the density p. In fact,  as has been 
exper imen ta l ly  es tabl ished [1,2], the reduct ion in the ra te  of t r ans fe r  of momentum and kinetic energy  with d e c r e a s e  
in p r e s s u r e  is observed  at a much higher  p r e s s u r e  than that cor responding  to the condition L >d. This  is equivalent  
to a d e c r e a s e  in the t r ans fe r  coe f f i c i en t s - -v i scos i ty  and the rmal  conductivity. Qual i ta t ively,  the effect  is at tr ibuted 
[1-8] to the sl ip of the gas molecu les  at the sur face  and the t e m p e r a t u r e  jump at the gas -wal l  in terface .  Quanti tat ively,  
the effects  a re  taken into account by introducing into Eqs. (3) and (4) a co r r ec t i on  for the d i s c r e t e  nature  of the 
medium,  whereupon these equations r e spec t ive ly  take the fo rm [1, 4, 5] 

where  ~ = 2 .0 .499L [(2 - f ) ~ f ] ;  

where  g = ((2 - (~)/~)(2/(7 + 1))(hfi?Cv)L = ilL. 

"~ _ ~ u  , (5 )  
d--l- 2~ 

~, ( T 1 - -  T2) (6)  
qJ -- d-~-2g ' 

In view of the fact that the momentum t r ans fe r  ( f )  and the rmal  accommodat ion (c~) coeff icients  va ry  between 0 
and 1, the sl ip (~) and t empe ra tu r e  jump (g) coeff ic ients  a re ,  in the genera l  case ,  indeterminate .  As a ru le ,  their  
n u m e r i c a l  values a re  found exper imenta l ly .  
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In one of the few studies of the t empe ra tu r e  jump and its consequences  for the one-d imens iona l  problem Laza r ev  
[3] r eco rded  the t empe ra tu r e  field between two plane plates  separa ted  by a d is tance  d = 9 . 1 0  -3 m. At p r e s s u r e s  p = 
= 8.7" 10 -2 m m  Hg and below (Kn = L/d >_ 0.07) he exper imenta l ly  detected,  if not a t empe ra tu r e  jump in the normal  
sense ,  a marked  deformat ion  of the t empe ra tu r e  field equivalent  to a jump in a l ayer  of gas with thickness on the 
o rde r  of the mean f ree  path adjacent  to the plates .  

The exper imenta l  de te rmina t ion  of the t empe ra tu r e  jump in heat t r ans fe r  between two pa ra l l e l  plates is 
assoc ia ted  with known exper imenta l  d i f f icul t ies ,  because in r a r e f i e d  gases  the fluxes a re  sma l l  and the conditions of 
one-d imens iona l i ty  a re  difficult  to satisfy.  It is for p r e c i s e l y  this r eason  that in studying heat t r ans fe r  in r a re f i ed  
gases  the methods of concent r ic  spheres  and coaxial  cy l inders  a r e  used [1-3 ,  6-8] .  Fo r  the case  of two coaxial  
cy l inders ,  the F o u r i e r  heat conduction equation takes the fo rm 

qey = ~ (T~-- T~), (7) 
ro In (R/ro) 

and with al lowance for the t e m p e r a t u r e  jump 

(T1 - -  T,) (8) 
q]Y= ro ln (R/ro) -~ ~ L[(ro/R) + 1] 

Apar t  f rom the fact  that express ion  (8) s t i l l  lacks s t r i c t  physical  ver i f ica t ion ,  in p rac t i ce  it is inapplicable to 
heat t r ans fe r  in an infinite space  (as R ~ ~) and can be used only for  a qual i ta t ive  analysis  at l a rge  values of R / r  0. 
Moreove r ,  both in the e a r l i e r  work of Dulong and Pet i t ,  Kundt and Warburg  [1, 3], and Smoluchowski [1, 2] as well as 
in the la te r  studies of Kyte, Madden, and P i r e t  [6], effects  equivalent  to a t e m p e r a t u r e  jump were  observed  at higher 
p r e s s u r e s ,  but for heat t r ans fe r  between sur faces  other  than plane. 

On the o ther  hand, the use of the Knudsen number  (Kn = L/d) for es t imat ing  the applicabi l i ty  of the continuum 
theory  is not sufficiently r igorous  o r  well founded, in view of the inde te rminacy  of the c h a r a c t e r i s t i c  d imension d. In 
fact,  the quantity b may be both the d is tance  between the plane h e a t - t r a n s f e r  su r faces  and the d i ame te r  d o of the inner 
cy l inder  or sphere ,  if heat t r a n s f e r  takes place between two coaxial  cy l inders  or concent r ic  spheres .  At the same 
t ime,  in p rac t i ce  it is more  usual to encounter  sys t ems  of a r b i t r a r y  shape and the choice  of a c h a r a c t e r i s t i c  

d imension  becomes  difficult .  

This  si tuation cannot be r ega rded  as sa t i s fac tory;  hence, the need to ref ine  the model  and mechan i sm of energy 

t r ans f e r  in r a r e f i ed  gases .  

Without disputing the p r e sence  of slip and a t empe ra tu r e  jump at the gas - so l id  in ter face ,  but assuming that they 
a re  negligibly smal l ,  we can show that the reduct ion in the ra te  of heat t r ans fe r  between two coaxial  cyl inders  or  
spheres  with d e c r e a s e  in p r e s s u r e  is a t t r ibutable  to the cu rva tu re  of the h e a t - t r a n s f e r  sur faces .  

F i r s t ,  we cons ider  the nature  of the qual i ta t ive  d i f fe rence  in heat t r ans f e r  through a r a re f i ed  gas for pa ra l l e l  
p la tes  and coaxial  cy l inders .  Let  all  the h e a t - t r a n s f e r  conditions be per fec t ly  identical ,  except  one-- the absence of 
cu rva tu re  of the su r f aces  in the f i r s t  case  and its p r e sence  in the second. Thus,  to p r e s e r v e  the identity, the gases ,  
the i r  t e m p e r a t u r e s  and the i r  thermophys ica l  p rope r t i e s  must  be the same  in both cases .  Moreove r ,  the d is tances  

between the h e a t - t r a n s f e r  su r faces  should be equal 

d --- R - -  r0, (9) 

as should the absolute t empe ra tu r e s  of like sur faces .  

To examine  the effect  of the cu rva tu re  of the su r faces  on the heat t r ans fe r  between them, we t r ans fo rm Eqs.  
(4) and (7), using (1) and (2), so as to isolate  the complexes  that do not depend on curva ture .  Then Eq. (4) is wri t ten  

in the fo rm 

q= ~---ATL, (10) 
L 

where  

ATL-- TI--T= L (11) 
d 
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is the temperature drop over one mean free path L (Fig. la). At small temperature gradients, neglecting the 
temperature dependence of the mean free path, we may assume that AT L ~ const. 

where 

We o b t a i n  a n a l o g o u s  r e l a t i o n s  f o r  c o a x i a l  c y l i n d e r s  f r o m  Eq.  (7): 

0 cy= ~ A T~ y, (12) 
L 

AT~Y T1--T2 L. (13) 
r o In (R/to) 

In (10) and  (12), in  v i ew  of the  c o n d i t i o n s  of the  p r o b l e m ,  the  c o m p l e x e s  k / L  a r e  the  s a m e .  

C o m p a r i n g  (11) and (13),  we f ind t ha t  as  a r e s u l t  of the  i n e q u a l i t y  r 0 l n ( R / r  0) < R - r 0 o r ,  u s i n g  (9), r 0 l n ( R / r  0) < 
< d the  i n e q u a l i t y  

A r ~ >  A r (14) 

i s  a l w a y s  s a t i s f i e d ,  f r o m  w h i c h  i t  fo l lows  tha t  if  a l l  of the  i d e n t i t y  c o n d i t i o n s  a r e  s a t i s f i e d  e x c e p t  o n e - - t h e  c u r v a t u r e  
of the  s u r f a c e s ,  f o r  a c o n t i n u u m  the  h e a t  f lux  d e n s i t y  is  a l w a y s  g r e a t e r  f o r  c o a x i a l  c y l i n d e r s  t han  fo r  f i a t  p l a t e s .  

F u r t h e r  a n a l y s i s  of E q s .  (11) and  (13) shows  t ha t  e v e n  in the  p r e s e n c e  of c u r v a t u r e  of the  s u r f a c e s  i t  i s  p o s s i b l e  
to f ind a c o m b i n a t i o n  of p h y s i c a l  p a r a m e t e r s  of the  g a s  fo r  wh ich  the  i d e n t i t y  c o n d i t i o n s  a r e  s a t i s f i e d  exac t l y .  In f ac t ,  
l e t  the  r e l a t i o n s  b e t w e e n  L and  d in (11) be  s u c h  

L = d ,  (15) 

t h a t  fo r  the  o n e - d i m e n s i o n a l  p r o b l e m  AT L = T 1 - T 2. T h e n  to e n s u r e  i d e n t i c a l n e s s  i t  is  n e c e s s a r y  to r e q u i r e  t ha t  in  
Eq.  (13) the  e q u a l i t y  AT~Y = T 1 - Tz o r  

A TL'= A T~ y (16) 

be  s a t i s f i e d ,  w h i c h  i s  f o r m a l l y  p o s s i b l e  only  w h e n  

L = r0 In (R/ro). (17) 

T h e  l a t t e r  i s  p h y s i c a l l y  i m p r a c t i c a b l e  owing  to the  p r e v i o u s l y  adop ted  c o n d i t i o n  (9). The  only  p a r a m e t e r  t ha t  c an  be  
v a r i e d  in  o r d e r  to p r e s e r v e  a l l  t h e  i d e n t i t y  c o n d i t i o n s  i s  the  p r e s s u r e  of the  ga s  p. 

In fact, considering relation (i), for a layer of gas of thickness R - r0 we cain select a pressure 

p ,>p ,  (18) 

such that all the identity conditions (9), (15), (16) and (17) are satisfied. From the latter inequality it follows that the 

curvature of the heat-transfer surfaces affects the energy transfer process in the same way as the gas pressure. 
Consequently, for each change in the curvature of the surfaces between which transfer processes are observed there 

is an equivalent change of pressure. It is in this that the qualitative originality of energy transfer processes in the 
presence of curvature of the surfaces essentially consists. We now show to what quantitative changes this leads in the 
process of heat transfer by conduction through a rarefied gas. 

In our qualitative analysis we did not impose any limitations either on the thermophysical parameters of the gas 
T, ~, k, L, or on the geometry of the heat-transfer systems d, r0, R. Therefore, our conclusions are valid for any 
values of T, ~?, k, L, d, r0, R. It is only important to satisfy the identity conditions. 

With this in mind, we find an expression for the temperature drop AT 1 in a layer of gas immediately adjacent to 
the surface of the inner cylinder and one mean free path thick (Fig. ib). Then, assuming that at L the interaction 
process corresponds to total energy transfer between the colliding molecules, by analogy with (13) we write 
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A T1 = T, -- t~ L, (19) 
ro In [(ro + L)/ro] 

w h e r e  t2 is  the t e m p e r a t u r e  of the gas  at the s u r f a c e  of an i m a g i n a r y  c y l i n d e r  of r a d i u s  r 0 + L.  

S i m i l a r  v a l u e s  of the t e m p e r a t u r e  d r o p s  A~ ,  

5 t~ = t2 - -  ta L, 
(r0 +L)  In [(r0 --2L)/(ro +L)] 

A t~ = t ~ -  tn+~ L, (21) 
[r0 + (n - -  1)L ] In {(r0 -]-nL)/[ro -t- ( n - -  1)L]} 

A T e =  t~ - -  T2 L, (22) 
(R --L)In [R/(R --L)] 

where AT z is the temperature drop in a layer of gas of thickness L immediately adjacent to the inner surface of the 

outer cylinder. 

. . . .  Atn, . . . .  AT z a r e  found fo r  the o t h e r  l a y e r s  of t h i cknes s  L: 

(20) 

E x p r e s s i o n s  (19)-_.(22) w e r e  obta ined  on the s a m e  in i t i a l  a s s u m p t i o n s  as  e x p r e s s i o n  (13). T h e r e f o r e ,  they  can  be  
used  for  c a l c u l a t i n g  the hea t  f lux equa l l y  wi th  (13). Be low i t  wi l l  be shown that  the advan tage  of e x p r e s s i o n s  (19)-(22)  
c o n s i s t s  in the p o s s i b i l i t y  of us ing  them to take into accoun t  the e f fec t  of the c u r v a t u r e  of the hea t  t r a n s f e r  s u r f a c e s .  

a 

o 

re 

,J'~ LL Lh L L L L L 

Fig .  1. Mode l  of m o l e c u l a r  t r a n s f e r  p r o c e s s e s :  a) 
be tween  p lane  s u r f a c e ;  b) be tween  coax ia l  c y l i n d e r s  

o r  s p h e r e s .  

Fo l lowing  the ideas  d e v e l o p e d  in ou r  q u a l i t a t i v e  a n a l y s i s ,  to s a t i s fy  the ident i ty  cond i t ions  we m u s t  find wi th in  
e a c h  l a y e r  of t h i c k n e s s  L a s e r i e s  of e q u i v a l e n t  p r e s s u r e s ,  whose  v a l u e s  s a t i s fy  the inequa l i ty  

P r , >  Pr2 > ..- > P~ > .-. > PR" (23) 

In r e a l i t y  t h e r e  is  no p r e s s u r e  g r a d i e n t  s a t i s f y i n g  inequa l i ty  (23). A c c o r d i n g l y ,  to p r e s e r v e  ident i ty  cond i t ions  (9), 
(15), (16) and (17) we can  p r o c e e d  by s e l e c t i n g  an e q u i v a l e n t  t h i c k n e s s  of the l a y e r  of gas  L r ,  for  which  condi t ion  (16) 
is s a t i s f i ed .  E s t a b l i s h i n g  in Eqs .  (19)- (22) ,  r e s p e c t i v e l y ,  the fo l lowing  e q u a l i t i e s :  h TI = 7"1-- t~; A t~ = t~-- t3 . . . . .  A t,, = 

= tn - -  t,+l ..... A T2= t~ - -  T2, we have  

L~, = ro In [(to -t- L)/rol, 

L.~ = (ro + L) In [(ro -b 2L)/(ro -bL)], 

L,. = [ro 4- (n - -  1)L] In {(ro + nL)/[ro 4- (n - -  1)L)}, 

L~ = (R - -L)  In [R/(R - -  L)]. 

(24) 

(25) 

(26) 

(27) 
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T h e  v a l u e s  of L r o b t a i n e d  c a n  be  u s e d  as  the  e q u i v a l e n t  of L in (13),  i f  we a i m  a t  f i nd ing  l o c a l  v a l u e s  A T ~  ( for  
e a c h  l a y e r  of t h i c k n e s s  L) and not  AT cy, a v e r a g e d  o v e r  the  e n t i r e  t h i c k n e s s  of the  R - r 0 l a y e r .  T h e  g e n e r a l  p a t t e r n  

L 
of the  t e m p e r a t u r e  f i e ld  i s  no t  d i s t u r b e d  by  s u b s t i t u t i n g  L r f o r  L,  s i n c e  L r = ~o [L, l n ( r  + L),4:], w h e r e  r0 -< r -< (R - 
- 2L) ,  and  the  l o c a l  v a l u e s  of L r s a t i s f y  the  i n e q u a l i t y  L~, ~Lr2 ...~Lr,o < ... ~ L  R. 

In practical calculations the parameters L m and L R may be of importance. The former may be regarded as the 
thickness of the boundary layer on the surface of the inner cylinder and used to calculate the heal losses per unit 
surface of the inner cylinder. The parameter L R may be regarded as the thickness of the boundary layer on the surface 
of the outer cylinder; it can be used to calculate the inflow of heat per unit surface of the outer cylinder. 

Replacing the parameter L and Lrl, in accordance with (24), in Eq. (13) with subsequent substitution of the 

result into Eq. (12) gives the value of the heat losses qCy with allowance for the curvature of the surface of the inner 
cylinder 

qCy = s  T2) In [1 q- (L/ro)] (28) 

In (R/ro) L 

We obtain a similar formula for the specific heal flux absorbed by the outer cylinder if in (13) we replace L with 

L r from (27): 

c y  _ ~, (T~ --- T:) (R --L) In [R/(R - -  L)] (29) 

qcR -- in (R/ro) L 

In both cases, passage to the limit as L ~ 0 gives the usual equation of heat conduction (7) for a continuum, since 

lira roln[1 "-(L/ro)j  = 1 and lim ( R - - L ) l n I R / ( R - - L ) ]  = 1. 
L 4o L L-o L 

Performing a similar analysis of the continuum equation for concentric spheres [6] 

we o b t a i n  

~, (T,  - -  T=) (30)  
q~P ro - -  (rg/t~) ' 

) ~ ( T , - - T ~ )  L~. (31) 
q ~  L fro--  (r~/R)] 

A f t e r  c o n s t r u c t i n g  e q u a t i o n s  s u c h  as  ( 1 9 ) - ( 2 2 ) ,  bu t  f o r  c o n c e n t r i c  s p h e r e s  a d i s t a n c e  L a p a r t ,  e x t r a c t i n g  the  

p a r a m e t e r  L r and  s u b s t i t u t i n g  v a l u e s  of L r in to  Eq.  (31), we h a v e  

2~ (T1 - -  T2) 1 
qScP - -  _ _  

ro - - ( r~ /R)  [1 +(L/ro)] 

q:p =-. )~ (T,  - -  T2) ! 

ro - -  (r~/R) I -~ (L/R) 

(32) 

(33) 

w h e r e  the  m u l t i p l i e r s  r = 1 / [1  + (L/r0) ] and r = 1 / [1  + ( L / R ) ]  t ake  in to  a c c o u n t  the  e f f e c t  of the  c u r v a t u r e  of the  
s p h e r e s .  As  L ~ 0 r = ~2 ~ 1. 

To c o n f i r m  the  v a l i d i t y  of f o r m u l a  (28) and e s t i m a t e  i t s  a c c u r a c y ,  we c o m p a r e d  the c a l c u l a t i o n s  wi th  the  m o s t  
r e l i a b l e  e x p e r i m e n t a l  d a t a  [6] on  the  h e a t  t r a n s f e r  of a p l a t i n u m  w i r e  0.078 m m  in d i a m e t e r  in a i r  a t  p r e s s u r e s  f r o m  
0.1 to 760 m m  Hg. A s  the  o u t e r  r a d i u s  we took the  d i s t a n c e  b e t w e e n  the  ax i s  of the  w i r e  and  the  r e s i s t a n c e  
t h e r m o m e t e r  (R = 152 m m ) .  As  the  c h a r a c t e r i s t i c  t e m p e r a t u r e  we took the  m e a n  i n t e g r a l  t e m p e r a t u r e  in the  g a s  
v o l u m e  b e t w e e n  the  i n n e r  and o u t e r  c y l i n d e r s :  

T m = T e +  ~ I A T ,  

w h e r e  
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The thermal  conduetivity of a i r  ~. was calculated with allowance for its t empera tu re  dependence [1], and the mean 
free path L at the surfaee t empera tu re  of the wire T1. 

The heat losses  f rom the pla t inum wire  to the gas, calculated from (28), are  represen ted  by the solid line in Fig. 
2, which gives the heat t r ans fe r  coefficient ozcCY = qCcY/(T 1 - T z) as a function of p r e s su r e .  The points r ep resen t  the 
exper imenta l  values of the hea t - t r ans fe r  coefficient [6]. 

The calculated curve cor responds ,  with an e r r o r  not exceeding 10%, to the exper imenta l  values in a p r e s s u r e  
region on the order  of 10-500 N/~n z (0.2 < Kn 0 < 10), which indicates the validity of Eq. (28) in the p r e s s u r e  region in 
which convection is prac t ica l ly  absent.  To take the effect of convection into account at p r e s s u r e s  of 500 N/m z and 
above, we made a calculat ion of the boundary layer  as a function of p r e s s u r e  in accordance with Langmui r ' s  formula 
[1] 

r In (rtro) = B,  (34) 

where B = CL(Tm/M)I/2;  for a i r  B = 4.3- 10 -8 m. 

In this case taking convection into account reduces  to finding the outer  radius  r of the cyl indr ica l  boundary 
layer  and subst i tut ing the cor responding  value in (28) instead of R. The calculated curve,  cor rec ted  for the effect of 
convection, is r epresen ted  by the broken l ine in Fig. 2. The d iscrepancy between calculat ion and exper iment  is within 
20-25%. Obviously, it is a consequence of d i s regard ing  the ver t ica l  or ientat ion of the wire and the t empera tu re  jump 
at its surface,  on the one hand, and the approximate na ture  of the Langmuir  formula  (34), on the other. Compar ison  
of theory and exper iment  [6] for a sphere 7.9 mm in d iamete r  (10 -8 < Kn0 < 10 -1) gives qual i ta t ively good agreement .  
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Fig. 2. Heat-transfer coefficients ecY, ozcSP (W/m z- deg) 
as functions of rarefied air pressure in the presence of 
curva ture  of the hea t - t r ans fe r  sur faces  (p,N/mZ): 1) 
theory for heat conduction between coaxial cyl inders;  2) 
the same with allowance for convection; 3) theory for 
spheres;  4) exper imenta l  for cyl inders;  5) the same for 

spheres .  

To ref ine  re la t ions  of type (28), (32) and to take into account cer ta in  other subt le t ies  of t r ans fe r  p rocesses  in 
raref ied  gases ,  it is neces sa ry  to organize special  exper iments  in the light of the theory expounded above. 
Nonetheless ,  the very fact of exper imenta l  conf i rmat ion of a theory based on an idea completely unrela ted to the 
concepts of gas sl ip and t empera tu re  jumps provides a basis  for reexamin ing  cer ta in  r e su l t s  of t ranspor t  theory in 
raref ied  gases following from modern  views concerning the importance of the d i sc re te  s t ruc ture  of the medium. In 
par t icu la r ,  this applies to the exper imenta l  data on the accommodation coefficient obtained from the t empera ture  jump 
at the surface of cy l indr ica l  wires .  
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k is Boltzmannts constant; ff is the diameter of the gas molecule; q is the specific heat flux; T and t are 
temperatures; p is the pressure; ~? and k are the coefficient of viscosity and the thermal conductivity of the gas, 

respectively; Cp and c v are the specific heat at constant pressures and constant volume; p and u are the density and 
mass-averaged velocity of the gas; m, 7, L are the mass, the mean velocity, and the mean free path of the gas 

molecules; f and ~ are the diffuse reflection and thermal accommodation coefficients; r0, R, and r are the inner and 

outer radii and the variable radius of the coaxial cylinders or spheres; d o = 2r0; d is the distance between two parallel 
plates; Kn 0 = L/d 0 or Kn = L/d is the Knudsen number. Indices: cy--cylinder; sp--sphere; i, rl--inner; 2, R--outer; 
m--mean;  j - - jump;  s--s l ip;  c - -curva ture .  
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